1. Course number and name - CHBE 2140 – Chemical Engineering Thermodynamics *(required)*

2. Credits and contact hours - 4 credit hours, 4 lecture hours (4-0-0-4)

3. Instructor’s or course coordinator’s name – Dr. Yonathan Thio

4. Textbook, title, author, and year
 Introduction to Chemical Engineering Thermodynamics; Smith, Van Ness, Abott, and Swihart, McGraw-Hill

5. Specific Course Information
 a. Catalog Description First and second laws of thermodynamics, equations of state, PVT properties, power cycles and refrigeration. Phase equilibrium. Fugacity and activity coefficients. Multi-reaction equilibrium.
 b. Prerequisites or co-requisites MATH 2551 Multivariable Calculus (grade “C” or better); CHBE 2100 Chemical Process Principles (grade “C” or better), Pre-requisite w/ concurrency: Biological Principles, BIOS 1107 and 1107L
c. Required, elective, or selected elective course - Required

6. Specific goals for the course
 a. Specific outcomes of instruction
 By the end of the course, a student should be able to:
 1) Define complex thermodynamic systems including transient materials and energy balances for open and closed systems.
 2) Be able to correctly use the First Law of Thermodynamics to find heat, work, and changes in internal energy and enthalpy for the analysis of any system, open or closed, undergoing irreversible processes.
 3) Apply the Second Law of Thermodynamics and the concept of entropy production to the analysis of reversible and real systems.
 4) Use equations of state for gases and liquids to determine changes in PVT properties. Understand molecular concepts.
 5) Understand the relationships among the internal energy, enthalpy, heat capacities, entropy, Gibbs and Helmholtz free energies.
 6) Perform thermodynamic analyses of power and refrigeration cycles, and be able to calculate ideal efficiencies for these cycles.
 7) Understand partial molar properties of components in a particular phase and apply to calculations of the heat of mixing, volume, and entropy changes on processing of ideal and real mixtures.
 8) Understand the origin of chemical potential and fugacity
 9) Determine the fugacity of a pure component non-ideal gas and of pure liquids and solids under high pressure.
 10) Understand the molecular basis for ideal mixtures and calculate equilibrium phase compositions by relating chemical potential of fugacity to composition.
 11) Calculate phase compositions for real mixtures at equilibrium based on EOS for gas phases, and activity coefficient models for non-ideal liquid or solid behavior, including colligative properties.
12) Understand when phase equilibrium calculations require use of an EOS applicable to all phases.
13) Determine the equilibrium composition of single and multi-phase reaction mixtures, and how they are affected by temperature, pressure, composition, and other variables.
14) Perform calculations of fluid properties and phase equilibrium of pure components and mixtures using computer software.

b. Connection with Student Outcomes

<table>
<thead>
<tr>
<th>CHBE 2140</th>
<th>Student Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) (2) (3) (4) (5) (6) (7)</td>
</tr>
<tr>
<td>Course Outcomes</td>
<td></td>
</tr>
<tr>
<td>Course Outcome 1</td>
<td>X</td>
</tr>
<tr>
<td>Course Outcome 2</td>
<td>X</td>
</tr>
<tr>
<td>Course Outcome 3</td>
<td>X</td>
</tr>
<tr>
<td>Course Outcome 4</td>
<td>X</td>
</tr>
<tr>
<td>Course Outcome 5</td>
<td>X</td>
</tr>
<tr>
<td>Course Outcome 6</td>
<td>X X</td>
</tr>
<tr>
<td>Course Outcome 7</td>
<td>X</td>
</tr>
<tr>
<td>Course Outcome 8</td>
<td>X</td>
</tr>
<tr>
<td>Course Outcome 9</td>
<td>X</td>
</tr>
<tr>
<td>Course Outcome 10</td>
<td>X X</td>
</tr>
<tr>
<td>Course Outcome 11</td>
<td>X X</td>
</tr>
<tr>
<td>Course Outcome 12</td>
<td>X X</td>
</tr>
<tr>
<td>Course Outcome 13</td>
<td>X X</td>
</tr>
<tr>
<td>Course Outcome 14</td>
<td>X X</td>
</tr>
</tbody>
</table>

Student Outcomes

(1) an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
(2) an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
(3) an ability to communicate effectively with a range of audiences
(4) an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

an ability to acquire and apply new knowledge as needed, using appropriate learning strategies

7. Brief list of topics to be covered
 a. First Law: Energy balance in open and closed systems; steady state and transient processes
 b. Second Law: reversible and irreversible processes; entropy balance for open and closed, steady-state and transient systems
 c. Properties of pure fluids: phase diagrams, equations of state, compressibility factor, generalized correlations, residual properties, equations of state for gases and liquids
 d. Ideal gas and real fluids: cubic equations; departure functions
 e. Relationship among thermodynamic functions: fundamental relationships between thermodynamic properties; Maxwell equations; thermodynamic property calculations
 f. Thermodynamics of devices: turbines, tubes, throttling, nozzles, pumps
 g. Thermodynamics of energy conversion: power production
 h. Refrigeration: Carnot and vapor compression cycles
 i. Pure-component multi-phase systems
 j. Ideal multi-component systems: Raoult’s law; flash calculations
 k. Partial molar properties; Gibbs-Duhem equation
 l. Chemical potential; fugacity: fugacity of pure component, fugacity of component in a mixture
 m. Excess properties and activity coefficients: definition and models
 n. Non-ideal multi-component systems: VLE, LLE; relating models to experimental data
 o. Reacting systems: reaction coordinates; equilibrium constant from Gibbs energy; pressure and temperature effects
Example grade scheme and course policies (details may vary slightly by semester/instructor)

COURSE GRADE:
The overall course grade will be based on the following assessments:
Homework 8%
Quizzes 12%
Midterm Exams (2) 45%
Final Exam 35%
There is no predetermined number of As, Bs, etc. Grade estimates are given after exams.

ACADEMIC INTEGRITY
Discussion with others on homework sets is encouraged. However, the final work you turn in must be your own, i.e. no copying of solution from others even if you work together.
Cases that prevent you from attending a lecture, quiz, or exam should be documented. Let the instructor know as soon as you can. If you miss an exam or quiz because of a valid excuse, either a make-up is given or the score will not be counted in grade calculation.
Violations of the Student Honor Code – plagiarism, copying problem solution from previous years or from solution manuals, etc. – will be reported to the Office of Student Integrity.
Georgia Tech aims to cultivate a community based on trust, academic integrity, and honor. Students are expected to act according to the highest ethical standards. For information on Georgia Tech’s Academic Honor Code, please visit http://www.catalog.gatech.edu/policies/honor-code/ or http://www.catalog.gatech.edu/rules/18/.

ACCOMODATIONS
Students with learning needs that require special accommodation should contact the Office of Disability Services dsinfo@gatech.edu or 404-894-2563 (voice)/ 404-894-1664 (TDD) as soon as possible to make an appointment to discuss your special needs and to obtain an accommodations letter. Please also feel free to contact me with any concerns you may have.

CAMPUS STUDENT RESOURCES:
https://ctl.gatech.edu/sites/default/files/documents/campus_resources_students.pdf provides a list of relevant campus resources available to Georgia Tech students. Mental Health & Wellness: As a student you may experience a range of issues that can cause barriers to learning, such as strained relationships, increased anxiety, alcohol/drug problems, depression, difficulty concentrating and/or lack of motivation. These mental health concerns or stressful events may lead to diminished academic performance or reduce a student’s ability to participate in daily activities. GT offers services to assist you with addressing these and other concerns you may be experiencing. If you or someone you know is experiencing any of the issues noted above, consider utilizing the confidential mental health services available on campus. I encourage you to reach out to GT CARE (www.care.gatech.edu, 404-894-3498) or the Counseling Center (www.counseling.gatech.edu, 404-894-2575) for support. An on-campus counselor or after-hours services are available to assist you.